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Abstract

Curves in the Euclidean space will be studied from the point of view of
differential geometry using only elementary methods of (local) analysis and
linear algebra. In particular, no topology or manifold theory is assumed!

A curve is a regular smooth map from an interval to the ambient
space modulo smooth reparametrizations. Besides the obvious notions
of a tangent line at a point (local) and the total length (global), it is
possible to define higher-order invariants like the curvature and torsion.
We will do this with the help of a Frenet frame — a special reference frame
moving along the curve which can be constructed, for a generic curve, from
higher-order derivatives via the Gramm-Schmidt orthogonalization.

The total curvature of a simple closed curve is related to its invariants
like the rotation index (turning number) in the planar case by a theorem
of Hopf and the bridge number in the spatial case by a theorem of Milnor.

The Four-vertex theorem states that the curvature of a simple closed
plane curve has at least four local extrema, which translates into the
statement that its evolute has at least four cusps.

We will quantify how much a simple curve has to be curved if it is
closed and how much if it is knotted by proving Fenchel’s theorem and
the Fáry-Milnor theorem which give lower bounds on the total curvatures
in the respective cases. Moreover, we will see that convex plane curves are
precisely the closed curves with the least possible total curvature.

Using the Gauß theorem (without proof) we will derive an isoperimetric
inequality between the length of a simple closed plane curve and the area
enclosed by it.

In order to prove some of the theorems above, we will need to show
that it is possible to lift a function defined on a star-shaped domain from
the circle to the real line and that it is possible to write the total curvature
of a curve as a limit of total angles of approximating polygons. These are
technical results which are interesting per se.

We will see examples of some amazing curves of practical and historical
importance. The cycloid, for example, was used by C. Huygens in the 17th
century to improve the pendulum clock in order to enable sailors in the
Atlantic ocean to measure the longitude more precisely. We will explain
this and also the function of the south pointing chariot, involut gear or
planimeter.
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1 Curves in Euclidean space
Define the notions of a (smooth regular) parametrized curve c : I → Rn, a
reparametrization map ϕ : Ĩ → I and a reparametrization c̃ = c ◦ ϕ : Ĩ → Rn.
Explain what smoothness and regularity mean on closed intervals. Define
an (unparametrized) curve c as an equivalence class of parametrized curves
c : I → Rn under the relation “being a reparametrization of”. The parametrized
curve c : I → Rn is then called a parametrization of the corresponding curve c.
A point on c is an equivalence class of pairs c : I → R, t ∈ I, where two
pairs c : I → Rn, t ∈ I and c̃ : Ĩ → Rn, t̃ ∈ Ĩ are equivalent if there is a
reparametrization ϕ : Ĩ → I such that c̃ = c ◦ ϕ and t̃ = ϕ(t).

Discuss orientations, define an oriented curve c and the curve with reversed
orientation c. Show that every curve corresponds precisely to two oriented curves
— one being the orientation reversal of the other. Define the image im(c) ⊂ Rn
of c and what it means for a curve to be simple. Define the notion of a periodic
parametrization and call a curve that admits it closed. Notice that in contrast to
im(c), the period is not a property of the curve c but rather of its parametrization
c : I → Rn.

Define the tangent line Tc(t) of a parametrized curve c : I → Rn at t ∈ I
and prove that Tc(t) = T c̃(ϕ−1(t)) for a reparametrization c̃ = c ◦ ϕ.

Define the total length

L(c) =

∫ b

a

‖ċ(t)‖dt

of a parametrized curve c : [a, b] → Rn and prove that L(c) = L(c̃). Conclude
that the tangent line is associated to a point on the curve c and the total length
to the curve c itself.

Define what it means that c : [a, b]→ Rn is a parametrization by arc-length
and prove that an oriented curve c always admits such a parametrization. This
parametrization is unique up to reparametrizations of the form ϕ(t) = t+ t0 for
t0 ∈ R. Explain where the name “arc-length” comes from and argue that the
parametrization by arc-length can be fixed uniquely by requiring the domain of
such parametrization to be [0, L(c)].

Discuss the approximation of c : I → Rn with approximating polygonials P
determined by their vertices c(t0), . . . , c(tk) for some subdivision a = t0 <
t1 < · · · < tk = b of [a, b] and k ∈ N. Mention that the supremum of the
combinatorially defined total length L(P ) over such P exists, i.e., c is rectifiable,
and equals L(c).

Illustrate the notions above with simple examples like a line, circle, helix,
spiral or a graph of a function.

If there is time left:

1. Can you draw a continuous curve that can not be parametrized smoothly?
Can you draw a non-constant curve that admits a smooth parametrization
but not a regular one? Can two non-equivalent parametrized closed curves
have the same image? (Hint: multiple covers.) What if the curves are in
addition assumed to be simple?

2. Show us interesting curves of your choice like a tractrix, trefoil or the
lemniscate. See [8] for inspiration.
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Literature: [6, Section 1], [7, Sections 1 and 4], [1, Section 2.1].

2 Frenet frame and curvatures
Given a parametrized curve c : I → Rn, define the notion of a Frenet frame
as a positively oriented orthonormal frame e1, . . . , en : I → Rn such that
Lin(e1, . . . , ei) = Lin(ċ, . . . , c(i)) and ei · c(i) > 0 for all i = 1, . . . , n− 1. Call c a
Frenet curve if it admits a Frenet frame. Show that c is a Frenet curve if and only
if ċ(t), . . . , c(n−1)(t) are linearly independent for every t ∈ I, and, in this case,
e1(t), . . . , en−1(t) are obtained from ċ(t), . . . , c(n−1)(t) by the Gramm-Schmidt
orthogonalization.

Prove the Frenet relations

ė1
ė2
...
...
...

ėn−1
ėn


=



0 ω1 0 0 . . . 0

−ω1 0 ω2 0
. . .

...

0 −ω2 0
. . . . . .

...

0 0
. . . . . . . . . 0

...
. . . . . . . . . 0 ωn−1

0 . . . . . . 0 −ωn−1 0





e1
e2
...
...
...

en−1
en


for some smooth functions ω1, . . . , ωn−1 : I → R. Define the curvatures κ1, . . . ,
κn−1 : I → R by

κi(t) =
ωi(t)

‖ċ(t)‖
.

Show that κ1, . . . , κn−2 : I → R are strictly positive functions and explain why
κn−1 is called the torsion.

Show that e1, . . . , en and κ1, . . . , κn−1 transform like ẽi = ei ◦ ϕ and κ̃i =
κi ◦ ϕ under an orientation preserving reparametrization ϕ : Ĩ → I. Therefore,
they are properties of the oriented curve c. Consider an (orientation preserving)
Euclidean motion F (x) = Rx + b, x ∈ Rn for some R ∈ SO(n), b ∈ Rn, and
define c̃(t) = F (c(t)) for all t ∈ I. Show that c and c̃ have the same curvatures
and that the Frenet frames are related by ẽi = Rei. An oriented curve admitting
a Frenet frame is called a Frenet curve.

If there is time left: Use a mathematical software (Mathematica, Matlab, . . . )
to animate the Frenet frame as it moves along a curve.

Literature: [5, Section 2A].

3 Local geometry of plane curves
Explain why every (regular) oriented curve c in the plane R2 is a Frenet curve.
Given its parametrization c : I → R2, call v(t) = e1(t) the unit tangent vector,
n(t) = e2(t) the unit normal vector and κ(t) = κ1(t) the (signed) curvature at
t ∈ I. Show that

n =

(
0 −1
1 0

)
v.
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Explain the geometric meaning of the sign of the curvature as the direction of
the rotation of the tangent line. Call the points where κ changes the sign turning
points.

Recall the Frenet equations(
v̇
ṅ

)
= ‖ċ‖

(
0 κ
−κ 0

)(
v
n

)
.

Show that if ‖ċ‖ = 1, then

v = ċ and c̈ = κn.

Show that for any parametrization c : I → R2, it holds

κ =
det(ċ, c̈)

‖ċ‖3
.

Show that the curvature κ : (a, b) → R is a constant function if and only if
c : (a, b)→ R2 is a part of a circle with radius 1

|κ| if κ 6= 0 or a line if κ = 0.
Given a function κ : (a, b)→ R, write down a parametrized curve c : (a, b)→

R2 having κ as its curvature explicitly. If κ is a linear function, the resulting
curve is called the Cornu spiral (clothoid).

Define what it means that a parametrized curve c1 : I1 → R2 has a contact of
order k for some k ∈ N with a parametrized curve c2 : I2 → R2 at (t1, t2) ∈ I1×I2
. Write down the Taylor series for c : I → R2 at t0 and argue that the Taylor
polynomial of order k has a contact of order k with c at (0, t0). The first order
Taylor polynomial

γ(t) = c(t0) + tċ(t0)

is called the osculating line. The second-order Taylor polynomial is called the
osculating parabola. Define the osculating circle of c : I → R2 at t0 as the circle
ζ : [0, 2π]→ R2 having a contact of order 2 with c : I → R2 at (0, t0). If κ(t0) 6= 0,
then

ζ(t) = c(t0) +
1

κ(t0)
n(t0) +

1

κ(t0)

(
sin(κ(t0)t)v(t0)− cos(κ(t0)t)n(t0)

)
.

The osculating line, parabola and circle, seen as curves, depend only on the
curve c and the point on it and not on a specific parametrization.

Illustrate the formulas and concepts above on examples of curves that we
have seen before.

If there is time left:

1. Motivate the Cornu spiral — linearly changing curvature makes it a good
candidate (in the first order) for connecting elements between segments of
constant curvature (line, circle) in civil engineering.

2. Animate the osculating circle as it moves along the curve and switches
from one side to another at turning points.

Literature: [5, Sections 2A and 2B]; also [6, Section 2.2], [1, Section 2.2] and
[7, Sections 5 and 6].
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4 The winding and turning numbers and the to-
tal curvature of a closed plane curve

Given a smooth map f : I → S1 ⊂ R2, construct a smooth function θ : I → R
such that

f(t) = (cos(θ(t)), sin(θ(t)))

for all t ∈ I — the angle function — and prove its uniqueness up to translations.
Given a closed parametrized curve c : [a, b] → R2, use θ to define the winding
number wx(c) around x ∈ R2\im(c). Define the turning number, or rotation
index, as

r(c) = w0(ċ).

Show that wx(c) and r(c) are integers that change their sign under the orientation
reversing reparametrization t 7→ −t.

Show that if c : [0, L]→ R2 is a parametrization by arc-length and θ : [0, L]→
R an angle function for ċ : [0, L]→ R2, then it holds

θ̇(t) = κ(t)

for every t ∈ I, and hence

r(c) =
1

2π

∫ b

a

κ(t)dt.

This integral is denoted by κ(c) and called the total curvature of c. How to
modify the formula above so that it holds for a general parametrization?

Formulate and prove the (smooth) Lifting Lemma for maps X → S1, where
X ⊂ Rn is a star-shaped open subset. The proof is analogous to the proof of the
existence of θ, which is a special case of the Lifting Lemma for X = I.

Explain what homotopy and regular homotopy mean. Use the Lifting Lemma
to argue that wx(c) does not change under a homotopy of c : I → R2\{x} via
maps missing x. Apply the Lifting Lemma to θ to prove that r(c) does not
change under a regular homotopy.

Mention the Whitney theorem which states that two (regular) closed plane
curves are regularly homotopic if and only if they have the same turning number.
Analogously, two curves are homotopic via maps missing a point if and only if
they have the same winding number around that point.

Compute wx(c), r(c) and the total curvature from the definition for some
examples.

If there is time left:

1. Explain the function of the south-pointing chariot: Let c : [a, b]→ R2 be
the curve traced by the center of the chariot parametrized by arc-length.
Let cL(t) = c(t) + λn(t) and cR(t) = c(t) − λn(t) be the paths traced
by the left and right wheel for some λ ∈ (0,∞), respectively. In general,
curves differing by a constant multiple of their unit normal vector are
called parallel. Show that

ċR(t)− ċL(t) = 2cθ̇(t)v(t),
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where θ : [a, b]→ R is the angle function for ċ. Therefore, a statue mounted
on the output wheel of a differential between the left and right wheel with
gearing ratio 1

2c will point in a constant direction.

2. Prove the Whitney theorem first for “long curves” (being straight lines
outside of a compact set) and then deduce it for closed curves.

Literature: [7, Section 2.2], [3, Section 12.4 and 12.5], [1, Section 2.2]; for the
notion of homotopy, see, e.g., Wikipedia.

5 Double points, double tangents and turning
points

Given a closed (regular) curve c in the plane, define what a (transverse) double
point, an inner and outer double tangent and a turning point are.

Throughout the talk, assume that c is a generic curve. This means that
small deformations (regular homotopies) were applied to it such that: there are
no self-intersections except for finitely many double points, every tangent line
either intersects c in precisely one point or it is a double tangent and there are
finitely many of these, there are finitely many turning points. Explain how to
do it and think about possible pathological cases.

Prove the Fabricius-Bjerre formula relating the number of inner and outer
double tangents T− and T+, respectively, with the number of turning points I
and the number of double points D:

T+ − T− = D +
1

2
I

Define the notion of a cusp and a (regular) curve with cusps. If c is a curve
with C cusps, then the Theorem of Ferrand guarantees that the Fabricius-Bjerre
formula remains true after adding 1

2C to the right-hand side and replacing the
(unsigned) counts D, T+ and T− with signed counts.

Assume that c and the plane are oriented and pick x ∈ im(c) which is not a
double point. The Whitney formula asserts that

r(c) = Dx + 2wx(c),

where r(c) is the turning number, Dx the signed count of double points (the
signs depend on the choice of x) and wx(c) the winding number around x. The
winding number of x ∈ im(c) is defined as the average of winding numbers of its
adjacent components.

Resolve the double points and argue that r(c) equals the signed count of the
simple closed curves obtained in this way.

Fix a slope θ ∈ [0, 2π). Argue that r(c) equals one half of a signed count of
points where the tangent line has slope θ.

If there is time left:

1. Have a look at the proof of the Whitney formula in H.Whitney, On regular
closed curves in the plane.
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2. The Lissajous curves, known from signal analysis, are given by Lp,q(t) =
(cos(pt), sin(qt)) for t ∈ [0, 2π] and p, q ∈ N. They are closed regular curves
in R2 with two cusps if p is even. Counting vertical lines of tangency (with
signs) if p = 2k − 1 gives

r(Lp,q) =

{
0 if q is even,
(−1)k+1 gcd(p, q) otherwise.

In particular, there are only three regular homotopy classes of regular
Lissajous curves for p, q relatively prime.

3. One can extend the notion of the turning number to curves with cusps in
the obvious way such that a cusp contributes by ±2π. All combinatorial
formulas for r(c) generalize in a straightforward way by adding the signed
count of cusps C.

Literature: [3, Chapter 12]

6 Hopf’s theorem on the turning number and Jor-
dan’s theorem on the winding number of a sim-
ple closed plane curve

Consider an oriented simple closed plane curve c. Use the Lifting Lemma to
prove Hopf’s theorem which states that

r(c) ∈ {±1}.

Sketch a proof of Jordan’s theorem which states that for any x ∈ R2\im(c), it
holds

wx(c) ∈ {±1, 0},
where the sign depends on the orientation of c. We call

I(c) = {x ∈ R2\im(c)|wx(c) 6= 0} and

E(c) = {x ∈ R2\im(c)|wx(c) = 0}

the interior and exterior of c, respectively.

If there is time left:

1. Define the notion of a regular piecewise smooth curve c in Rn and its
corners. Define the (unsigned) angle α ∈ [0, π] at a corner. For n = 2,
this can be refined to the (signed) angle α ∈ [−π, π] depending on the
orientation of the plane. Generalize the notion of the total curvature for
regular piecewise smooth plane curves and formulate a generalization of
Hopf’s theorem for them.

2. Jordan’s theorem also holds more generally, namely for continuous simple
closed plane curves. These generalizations can be proven by smoothing
and reduction to the previous cases.

Literature: [7, p. 61–71]; see also [1, p. 47–52]
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7 Convex plane curves
Consider the following definitions of convexity of a simple closed plane curve c:

1. I(c) is convex, i.e., with every pair of its points I(c) contains also the
segment between them.

2. For every line l : R→ R2, the set l−1(im(c)) is either

(a) empty, or

(b) a singleton, or

(c) a union of two different points, or

(d) a closed interval [a, b] for a < b.

3. im(c) lies entirely on one side of Tc(t) for every t ∈ I.

4. It holds either κ(t) ≥ 0 for all t ∈ I or κ(t) ≤ 0 for all t ∈ I. In other
words, there is no turning point.

Notice that 1 and 2 make sense for continuous simple closed curves—they are
topological definitions. This is in contrast to 3 and 4, which require the notions
of a tangent line and curvature, which are available only for regular curves—they
are geometric definitions. Prove 1⇐⇒ 2, 3⇐⇒ 4 and 2⇐⇒ 3. In particular,
all definitions are equivalent.

Let c be a simple closed plane curve parametrized by arc-length. Define the
total absolute curvature by

|κ|(c) =
∫ b

a

|κ(t)|dt.

How does the formula look like for an arbitrary parametrization? Use Hopf’s
theorem to prove that

|κ|(c) ≥ 2π

with the equality if and only if c is convex. This gives another characterization
of convex simple closed curves as those minimizing the total absolute curvature.

If there is time left:

1. Give an example of a closed convex curve that is not simple. Prove that a
closed convex plane curve is simple if and only if r(c) ∈ {±1}.

2. Define the notion of lines of support with slope θ of a closed plane curve c as
a pair of lines with slope θ which touch the curve and the curve lies entirely
between them (they are tangents in the smooth case). The distance between
the lines d(θ) is called the width of c. Prove that if d : [0, π)→ [0,∞) is a
constant function, then the curve is convex.

Literature: [5, p. 30–32], [7, p. 75–79], [1, p. 52–55]
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8 The Four vertex theorem for a convex simple
closed plane curve

A vertex of a parametrized (regular) curve c : I → R2 is a point t ∈ I such that

κ̇(t) = 0.

Explain the geometric meaning of a vertex as a local extremum of curvature and
prove that it is independent of parametrization.

The Four vertex theorem states that every simple closed plane curve c has at
least 4 vertices. Prove it for convex simple closed plane curves.

If there is time left:

1. Compare various proofs of the Four vertex theorem and think of the role
of the convexity assumption and a way to remove it.

2. Think of a way to prove that a curve with constant width has at least six
vertices.

3. How to generalize the notion of a vertex to higher dimensions?

Literature: [7, p. 72–75], [1, p. 57–61]; see also [5, p. 33]

9 Evolute and Involute
Let c : I → R2 be a (regular) parametrized curve with nowhere vanishing
curvature. Define the evolute E(c) and the involute I(c) by

E(c)(t) = c(t) +
1

κ(t)
n(t) and I(c)(t) = c(t)− L(t)v(t)

for all t ∈ I, where L =
∫
‖ċ(s)‖ds. Therefore, E(c) is a smooth curve I → R2

and I(c) a one-parametric family of such curves. Argue that E(c) and I(c)
transform well under orientation preserving reparametrization and hence are
associated to the oriented curve c. Use a parametrization of c by arc-length to
show that

vI(t) = −ε1n(t) vE(t) = −ε2n(t)
nI(t) = ε1v(t) nE(t) = ε2v(t),

where ε1 = sgn(Lκ) and ε2 = sgn(κ̇). Compute the curvatures

κI =
‖ċ‖
‖İ‖

κ =
sgn(κ)

|L|
and κE =

‖ċ‖
‖Ė‖

κ =
‖ċ‖
|κ̇|

κ3.

We see that I(c) consists of curves that are regular on the entire I, whereas E(c)
is a regular curve outside of vertices of c only. Vertices where κ̇ changes the sign
correspond to cusps of E(c). Every two curves from I(c) are parallel.

Recall the geometric meaning of E(c)(t) as the center of the osculating circle of
c at t. For every z ∈ I, define Lz(t) =

∫ t
z
‖ċ(s)‖ds and Iz(c)(t) = c(t)−Lz(t)v(t).
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Show that Iz(c) is precisely the curve traced by the endpoint of a string that
unwinds from c starting at z. Show that

E(I(c)) = c and c ∈ I(E(c)).

Therefore, E can be seen as a derivative and I as an integral on a certain class
of curves.

Define the cycloid ζ(t) = (t − sin(t), 1 − cos(t)) for t ∈ R and the inverted
cycloid ζ̃ = i ◦ ζ, where i(x, y) = (x,−y). Prove that (draw picture)

E(ζ)(t) = ζ(t− π) + (π,−2),
E(ζ̃)(t) = ζ̃(t− π) + (π, 2),

Iπ(ζ)(t) = ζ(t− π) + (π, 2),

Iπ(ζ̃)(t) = ζ̃(t− π) + (π,−2).

Therefore, ζ and ζ̃ would correspond to e±t under the analogy with derivatives
and integrals.

Show that ζ̃ is a tautochrone — if a ball is put at z ∈ im(ζ̃) and let roll freely
on ζ̃ in a constant downward-pointing gravity field, then the time T in which it
reaches the bottom of ζ̃ does not depend on z. Conversely, every tautochrone is
a part of the inverted cycloid.

The tautochrone was discovered by C.Huygens in the 17. century with the
goal to improve the pendulum clock so that it can be used to measure time on
ships more reliably. Explain why it is important that the pendulum is constrained
to a tautochrone when the ship swings on big waves. Explain how the knowledge
of time is used in nautical navigation. Explain how such an improved pendulum
is constructed by looking for the evolute of the tautochrone.

If there is time left:

1. Explain the function of the involute gear: Consider two gearwheels with
centers O1 and O2 whose shape is specified by closed curves c1 and c2,
respectively. Suppose that the gearwheels rotate with angular velocities
ω1(t) and ω2(t) and let R1(t) and R2(t) denote the corresponding rotation
matrices, respectively. Suppose that the curves are parametrized such
that K(t) = R1(t)c1(t) = R2(t)c2(t) is a first-order contact for all t. This
implies that R1c1 and R2c2 have a common unit normal nK(t) at K(t)
and that the orthogonal projections of the speed vectors

v1(t) =
d

ds s=t
Rsc1(t) and v2(t) =

d

ds s=t
R2(t)c2(t)

onto nK(t) have the same magnitude v(t). For every time t imagine a pair
of circles with radii r1(t) and r2(t) centered at O1 and O2, respectively,
which are specified by the condition that their common tangent is nK(t).
The well-known relation of the angular and tangent velocity then implies
that r1(t)ω1(t) = v(t) = r2(t)ω2(t). Let P (t) denote the intersection point
of nK(t) and the line connecting O1 and O2. For an optimal function of the
gearing, it is required that the ratio of ω1(t) and ω2(t) is constant for all
times. This is equivalent to the ratio of r1(t) and r2(t) being constant and,
by similarity of triangles, to the point P (t) being constant. This is achieved
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in particular when nK(t) = nK is constant. This condition implies that
the normals of c1(t) and c2(t) have to be R−11 (t)nK and R−12 (t)nK for all
times, respectively. Therefore, c1 and c2 are involutes of the circles (O1, r1)
and (O2, r2) whose common tangent is nK .

2. Let F = {Fs|s ∈ I} be a family of curves parametrized by an interval.
An envelope of F is a (smooth) curve e : I → R2 such that e(s) lies
on Fs and the tangent lines of e and Fs at this point agree. Show that if
Fs = {(x, y) ∈ R2|F (x, y, s) = 0} for a smooth function F : R2 × I → R,
then an envelope is a solution of the equations

F (x(s), y(s), s) = 0 and
∂

∂s
F (x(s), y(s), s) = 0.

This can be interpreted by saying that e traces those points where in-
finitesimally close curves intersect. If these curves are light rays, then such
points are brighter (an intersection point seems like a source of ray for the
observer) and create patterns named caustics.
Show that if Fs is the family of normal lines of a curve c with κ 6= 0 and
κ̇ 6= 0, then the envelope e : I → R2 exists and is equal to E(c). Note that
one can take F (x, y, s) = ((x, y)− c(s)) · v(s) as the generating function
for Fs in this case. Conclude that any curve c is equal to the envelope of
the normal vectors to I(c).

Literature: [7, p. 101–111]

10 Local geometry of space curves
When is an oriented space curve c a Frenet curve? Given a parametrization
c : I → R3 and the Frenet frame e1, e2, e3, call v(t) = e1(t) the unit tangent
vector, n(t) = e2(t) the unit normal vector and b(t) = e3(t) the unit binormal
vector for t ∈ I. Define the (positive) curvature κ(t) = κ1(t) and the torsion
τ(t) = κ2(t). Show that

b = v × n.
Recall the Frenet equationsv̇ṅ

ḃ

 = ‖ċ‖

 0 κ 0
−κ 0 τ
0 −τ 0

vn
b

 .

Show that if ‖ċ‖ = 1, then

v = ċ and κ = ‖c̈‖.

Show that for any parametrization c : I → R3, it holds

κ =
‖ċ× c̈‖
‖ċ‖3

and τ =
det(ċ, c̈,

...
c )

κ2
.

Notice that using the equations above the curvature κ(t) can be defined for any
(regular) curve, i.e., not necessary a Frenet curve, and the torsion can be defined
whenever κ(t) 6= 0.

12



Prove that a Frenet curve c : I → R3 is confined to a plane L ⊂ R3 if and
only if τ(t) = 0 for all t ∈ I. In this case, κ(t) = |κ̃(t)|, where κ̃ is the curvature
of the plane curve c̃ : I → L ' R2.

Show that a space curve has constant non-zero curvature and torsion if and
only if it is a part of a helix.

Let c : I → R3 be a parametrized curve and t0 ∈ I. Define the osculating
plane at t0 as the plane spanned by Lin(v(t0), n(t0)) and the osculating sphere
at t0 as the sphere with center

c(t0) +
1

κ(t0)
n(t0)−

κ̇(t0)

τ(t0)κ2(t0)
b(t0)

and radius 1
κ(t0)

provided that κ(t0) 6= 0 and τ(t0) 6= 0.
Consider the Taylor polynomial of order 3 of c : I → R3 at t0 and rewrite it in

terms of v, n and b. Consider the distance function and argue that the osculating
plane and sphere are unique plane and sphere with contacts of orders 2 and 3
with c at t0, respectively.

In the setting above, the plane Lin(n(t0), b(t0)) is called the normal plane
and the plane spanned by Lin(v(t0), b(t0)) the rectification plane at t0. Explain
that the projections of the Taylor polynomial to the osculating, normal and
rectification planes have types of a parabola, Niels parabola and cubic parabola,
respectively.

If there is time left:

1. For t0 ∈ I, consider the linear projection πt0 : R3 → Lin(v(t0), n(t0)) ' R2

along b(t0). Then the plane curve c̃(t) = πt0(c(t)) has the same curvature
at t0 as c.

2. Let c : I → R3 be a spherical curve, i.e., it holds ‖c(t)‖ = 1 for all t ∈ I.
Let J = det(c, ċ, c̈). Then c is a Frenet curve with

κ =
√
1 + J2 and τ =

J̇

1 + J2
.

Literature: [5, Sections 2B and 2C], [7, p. 42–48]

11 Approximating the total curvature of a space
curve with the total angle of a polygon

Define the total angle κ(P ) of a polygon P in Rn (it is the total curvature of P
when seen as a regular piecewise smooth curve). Let c : [a, b]→ R3 be a closed
(regular smooth) parametrized space curve. Define its total curvature κ(c) and
prove that

κ(c) = sup
P
κ(P ),

where the supremum is taken over approximating polygons P for c. You might
also want to prove the following fact mentioned in the first talk:

L(c) = sup
P
L(P ).

13



If there is time left:

1. Can you generalize the result to other dimensions n ∈ N?

2. Can you generalize the result by allowing c to be regular piecewise smooth?

Literature: [1, p. 72–81 and 34–37]

12 Bridge number and the total curvature of a
closed space curve

Let c : [a, b]→ R3 be a closed parametrized space curve. Define the crookedness
(bridge number in [1]) by

µ(c) = min
e∈S2

µ(c, e),

where µ(c, e) counts the local maxima of the function t → c(t) · e. Prove that
the definition is invariant under reparametrizations and that µ(c, e) = µ(c,−e).
Show that if c is a convex plane curve, then µ(c) ∈ {1,∞}, and if in addition κ is
nowhere vanishing, then µ(c) = 1. Recall the notion of the total curvature µ(c)
and prove that

1

A[S2]

∫
S2
µ(c, e)dA[e] =

1

2π
κ(c),

where A[S2] = 4π is the area of S2 and the symbol
∫
S2 µ(c, e)dA[e] denotes the

integration of the function e→ µ(c, e) over S2. For our purposes, we can define
this integral in spherical coordinates as the Lebesgue integral∫

S2
µ(c, e)dA[e] =

∫ π

0

∫ 2π

0

µ(c, θ, φ) sin(θ)dθdφ,

where µ(c, θ, φ) = µ(c, e) for e = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)) and θ ∈
[0, π], φ ∈ [0, 2π) and dA[e] is replaced by sin(θ)dθdφ. Conclude that

κ(c) ≥ 2πµ(c).

If there is time left:

1. Show that the crookedness of a convex plane curve equals 1.

2. Have a look at W.Milnor, On the total curvature of knots. Crookedness is
defined for closed curves in Rn and the relations to the total curvature µ(c)
(defined using κ1) still hold. It is also proven that

inf
c′∈[c]

κ(c′) = 2π min
c′∈[c]

µ(c′),

where the infimums are taken over all curves c′ ambiently isotopic to c. It
is proven using an approximation by polygons.

3. The number µ(c) is called Brückenzahl in [1]. This can be motivated
as follows. Given a simple closed space curve c : [a, b] → R3, we can
project it orthogonally onto a plane L ⊂ R3 and obtain a smooth curve
cL : [a, b] → L ' R2. By taking a generic L, we may assume that cL

14



is a regular projection of c, which means that the only self-intersections
of cL are double points. Consider a double point x = cL(t1) = cL(t2).
Depending on the order of t1 and t2 and the height of c(t1) and c(t2)
above L, we can distinguish whether a segment of cL going through x
is an overcrossing or an undercrossing. The curve cL together with this
information is called a knot diagram of c. A bridge is an arc, i.e., a segment
of cL with no undercrossing, with at least one overcrossing. Let b(c, L)
denote the number of such bridges in a knot diagram determined by c
and L. Then b(c) = minL b(c, L), where the minimum is taken over all
regular projections, is called the bridge number of c. It holds

min
c′∈[c]

µ(c′) = min
c′∈[c]

b(c′),

where the minima are taken over all curves c′ ambiently isotopic to c. Note,
however, that b(c) might not be equal to µ(c) for a single curve.

Literature: [1, p. 81–86]

13 Fenchel’s Theorem on the minimal curvature
of a simple closed space curve

Prove Fenchel’s theorem which states that the total curvature κ(c) of a simple
closed space curve c satisfies

κ(c) ≥ 2π

with the equality if and only if c is a convex plane curve.
Fenchel’s theorem holds for any closed curve c. It also holds in any dimension

n ∈ N (for n = 2, we mean |µ|(c)). Discuss the proof of these generalizations.

If there is time left:

1. Compare various proofs in the literature (using crookedness or not).

2. Does Fenchel’s theorem hold also for closed regular piecewise smooth
curves? You can motivate this question by considering the teardrop or a
polygon.

Literature: [1, p. 86–87], [5, p. 33–35], [7, p. 78–81]

14 Fundamental theorem of local curve theory
and the classification of curves with constant
curvatures

Formulate the Fundamental theorem of local curve theory: for given functions
κ1, . . . , κn−2 : (a, b)→ (0,∞), κn−1 : (a, b)→ R, there is a curve c : (a, b)→ Rn
with curvatures κ1, . . . , κn−1 and this curve is unique up to Euclidean motions.
Prove the theorem by rewriting the Frenet equation as a linear differential
equation for n× n functions — components of the Frenet frame e1, . . . , en —
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and applying the result on the existence and uniqueness of a global solution of
such an equation. The curve c can then be obtained by integrating e1.

Assuming that the curvatures κ1, . . . , κn−1 are constant, write down a
solution in terms of the matrix exponential exp(tK) of the curvature matrix

K =



0 ω1 0 0 . . . 0

−ω1 0 ω2 0
. . .

...

0 −ω2 0
. . . . . .

...

0 0
. . . . . . . . . 0

...
. . . . . . . . . 0 ωn−1

0 . . . . . . 0 −ωn−1 0


.

Because K is antisymmetric, it can be transformed to its normal form by
conjugation with a rotation matrix R ∈ SO(n),

K̃ = RKRt =


B1 0 . . . 0

0 B2
. . .

...
...

. . . . . .
...

0 . . . . . . Bk

 ,

where k = bn/2c and

Bi =



(
0 λi

−λi 0

)
for i ∈ {1, . . . , k − 1} and i = k for n even, 0 λk 0

−λk 0 0

0 0 0

 for i = k and n odd,

where λi ∈ [0,∞) are such that ±iλi are eigenvalues of K. The exponential
of K̃ can then be computed explicitly. Carry on the computation in the cases
n = 2 and n = 3 in details and arrive at the classification of curves with constant
curvatures which we have seen before.

Identify all simple closed curves with constant curvature for n = 4 lying in
the Clifford torus S1 × S1 ⊂ R4. The standard embedding S1 × S1 ⊂ R3 then
gives the torus knots Tp,q in R3 for p, q ∈ N relatively prime. Draw T2,3 (two
times around the equator and three times around the meridian) and identify it
with the trefoil knot.

If there is time left:

1. Use mathematical software to plot torus knots conveniently.

2. Can you compute the total curvature κ(Tp,q) and the crookedness µ(Tp,q)
and check that they satisfy κ(Tp,q) ≥ 2πµ(Tp,q)?

Literature: [5, Section 2D]
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15 Knotted curves and the Fáry-Milnor Theorem
Define the notion of an isotopy of Rn and what it means for two curves to be
ambiently isotopic. Here we consider continuous curves and isotopies. Show that
“being ambiently isotopic” is an equivalence relation on curves. Define a knot as
an equivalence class of simple closed curves with respect to this relation.

Argue that there is only one knot in R2 — the unknot — represented by the
unit circle. The unknot in Rn is defined as the knot which is equivalent to the
unknot in one (and hence any) plane in Rn. Argue that the unknot is the only
smooth knot in Rn for n ≥ 4. A simple closed curve c : I → R3 is called knotted
if it is not equivalent to the unknot. Otherwise, it is called unknotted.

Prove the Fáry-Milnor Theorem: A knotted (smooth regular) simple closed
space curve c satisfies

κ(c) ≥ 4π.

Construct curves that are not knotted and have arbitrary large total curvature.
Hint: use helix. Therefore, knowing only the total curvature, we can conclude
that c is unknotted provided that κ(c) < 4π, but we can not show that it is
knotted.

If there is time left:

1. Check the Fáry-Milnor Theorem for torus knots (numerical computation
for a couple of examples including the trefoil knot is enough).

2. Torus knots are a family of non-equivalent knots. Another family of non-
equivalent knots which are not equivalent to torus knots is Lissajous knots,
which project onto Lissajous curves. Famous is also the figure-eight knot,
which every sailor has to know, and which does not belong to either of these
families. Knot theory aims to construct invariants (integers, polynomials,
or certain algebraic structures) that can distinguish knots from each other.
The bridge number b, defined as the minimum of bridge numbers b(c) over
isotopic curves c, is one of these. It distinguishes the trefoil knot with b = 2
from the unknot with b = 0. However, it does not distinguish the trefoil
knot from the figure-eight knot. Note that by picking a parametrization
and computing the total curvature, we get an upper bound κ(c)/2π on the
bridge number of the corresponding knot.

Literature: [1, p. 87–91]

16 Isoperimetric inequality
Let c : [0, L]→ R2 be a simple closed plane curve with rotation number r(c) = 1
parametrized by arc-length, and let u : R2 → R2 be a continuously differentiable
map (a vector field). The following equalities are called the Gauß divergence
theorem and Green’s rotation theorem, respectively:∫

I(c)

(∂u1
∂x

+
∂u2
∂y

)
dxdy = −

∫ L

0

u(c(t)) · n(t)dt,∫
I(c)

(∂u2
∂x
− ∂u1

∂y

)
dxdy =

∫ L

0

u(c(t)) · v(t)dt.
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Show that these theorems are equivalent (the dimension is 2) and motivate their
proofs by considering the flux of u through an infinitesimal square. Note that
the minus sign in front of the integral comes from the fact that the normal
vector n(t) points in the interior of I(c), which is due to the assumption on r(c).
Use one of these theorems to deduce the following expression for the area A(c)
enclosed by c:

A(c) :=

∫
I(c)

dxdy = −
∫ L

0

u̇1(t)u2(t)dt =

∫ L

0

u1(t)u̇2(t)dt.

Express A(c) and L(c) in terms of Fourier coefficients of c viewed as a complex
valued function and prove the Isoperimetric inequality

4πA(c) ≤ L(c)2

with equality if and only if c is a circle.

If there is time left:

1. The length L(c) of a simple closed plane curve c is measured by a device
called an opisometer. It consists of a wheel of radius r which is attached
to a handle and rolled along the curve. The result of the measurement is
displayed on a dial which is geared to the measuring wheel, the gearing
ratio being a function of r. The principle of an opisometer is obvious.
The area A(c) is measured by a slightly more complicated device called a
planimeter (more specifically a polar planimeter). It consists of two solid
bars of lengths l1 and l2 linked together by a joint which can rotate freely
in the plane. One end of the linkage is fixed in the plane while the other
traces once around c during the measurement. The measuring wheel of
radius r is mounted on the bar whose one end traces c in the distance ε
from the joint and its rotation axis is fixed parallel with the bar. The
result of the measurement is displayed on a dial which is geared to the
measuring wheel, the gearing ratio being a function of r, l1, l2 and ε.
Apply Green’s theorem to a unit vector field perpendicular to the bar at
the point where it traces c and explain why A(c) is proportional to the
total distance d rolled by the wheel. Use the geometry of the problem to
express the proportionality constant as a function of (l1, l2, ε).

Literature: [1, p. 61–64], [7, Section 5]
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